

Irvine, CA 92618

OMNIKEY® 5025 CL

SOFTWARE DEVELOPER GUIDE

©2013 HID Global Corporation/ASSA ABLOY AB. All rights reserved.

Contents

About	this Guide	4			
	Purpose	4			
	Organization	4			
1	Overview	4			
	1.1 Product Description	4			
	1.2 Features	4			
2	Getting Started	5			
	2.1 Driver Installation	5			
3	PC/SC	5			
	3.1 Accessing Contactless Cards or Reader through PC/SC	5			
	3.2 Contactless PC/SC Commands	7			
4	Objects and Items	10			
	4.1 The OID Tree	10			
5	Reader Configuration	11			
	5.1 Reader Capabilities (A0h)	12			
	5.2 HID Prox Configuration (ACh)	13			
	5.3 ATR Configuration (8Bh) in Native CCID Mode	13			
	5.4 Reader Mode (8Dh)	15			
	5.5 Reader Configuration Control (A9h)	16			
6	Migration Scenarios	17			
	6.1 Get UID	17			
	6.2 Get PAC Bits	17			
	6.3 ATR Format in Legacy Mode	18			
7	Appendix A - Enabling Escape CCID commands	19			
8	Appendix B - HID Driver Installation	20			
9	Appendix C - Manual Driver Update24				
10	Appendix D - Definitions, Abbrev and Symbols27				
11	Appendix E - References	27			
12	Appendix F - Sample Code				

Page 2 of 31

Copyright

©2013 HID Global Corporation/ASSA ABLOY AB. All rights reserved.

Trademarks

HID GLOBAL, HID, the HID logo and OMNIKEY are the trademarks or registered trademarks of HID Global Corporation, or its licensors, in the U.S. and other countries.

Revision History

Date	Author	Author Description	
11/2013	T. Konieczny, M. Goralczyk	Initial Version	A.0

Contacts

North America			Europe, Mi	ddle East and Africa
15370 Barranca Parkway Irvine, CA 92618 USA Phone: 800 237 7769 Fax: 949 732 2120			Phoenix Ro Haverhill, S England Phone: Fax:	ad uffolk CB9 7AE +44 1440 714 850 +44 1440 714 840
		Asia Pacific		
		19/F 625 King North Point, I Hong Kong Phone: 852 3 Fax: 852 3 Support.hi	g's Road sland East 160 9800 160 4809 idglobal.co	<u>m</u>

Page 3 of 31

November 2013

About this Guide

Purpose

This Developer Guide is for developers integrating contactless HID PROX storage cards using the OMNIKEY $^{\otimes}$ 5025 CL.

Organization

Chapter 1 - Overview

Chapter 2 - PC/SC Introduction

Chapter 3 - OMNIKEY 5025 CL Use

Chapter 4 - Retrieve Reader Information

Chapter 5 - Migration Scenarios

1 Overview

1.1 Product Description

The OMNIKEY[®] 5025 CL opens new market opportunities for system integrators seeking simple reader integration and development using standard interfaces, such as CCID (Circuit Card Interface Device). This reader works without installing or maintaining device drivers; only an operating system driver, for example, Microsoft CCID driver is necessary.

The OMNIKEY 5025 CL features include supporting the common low frequency HID Prox card technology.

1.2 Features

- CCID Support. Removes the requirement to install drivers on standard operating systems to fully support capabilities of the reader board.
- HID Prox. Supports the common low frequency HID Prox card technology.
- Rapid and Easy Integration. No special driver installation is required.
- Advanced Power Management. Fully compliant to Low Power modes specified by USB include the following.
 - Allows the computer to turn off the reader to save power (while the reader is still able to read cards, with reduced power)
 - Allows the reader to wake the computer
- OMNIKEY 5325 Legacy Mode. Emulation of OMNIKEY 5325 reader

November 2013

Page 4 of 31

HID

2 Getting Started

2.1 Driver Installation

As stated previously, no extra driver installation is necessary and every CCID compliant driver should work with the reader. However, Microsoft's CCID driver prevents the execution of CCID Escape commands. If an application uses those commands, apply the procedure in Appendix *A* - *Enabling Escape CCID commands*.

If the reader works in legacy mode (5325 mode) it requires installation of the HID driver. For details see *Appendix B - HID Driver*.

3 PC/SC

With the OMNIKEY 5025 CL, access contactless cards through the same framework as ISO7816 contact cards. This makes card integration a snap for any developer who is already familiar with PC/SC. Even valuable PC/SC resource manager functions, such as card tracking, are available for contactless card integration.

The Microsoft[®] Developer Network (MSDN[®]) Library contains valuable information and complete documentation of the SCard API within the MSDN Platform SDK.

See http://msdn.microsoft.com/en-us/library/windows/desktop/aa380149(v=vs.85).aspx

You can directly access contactless cards through the PC/SC driver.

3.1 Accessing Contactless Cards or Reader through PC/SC

The following steps provide a guideline to create your first contactless smart card application using industry standard, PC/SC compliant API function calls. The function definitions provided are taken verbatim from the MSDN Library [MSDNLIB]. For additional descriptions of these and other PC/SC functions provided by the Microsoft Windows PC/SC smart card components, reference the MSDN Library.

See http://msdn.microsoft.com/en-us/library/ms953432.aspx.

1. Establish Context

This step initializes the PC/SC API and allocates all resources necessary for a smart card session. The **SCardEstablishContext** function establishes the resource manager context (scope) within which database operations is performed.

LONG SCardEstablishContext(IN DWORD dwScope,

IN LPCVOID pvReserved1, IN LPCVOID pvReserved2, OUT LPSCARDCONTEXT phContext);

2. Get Status Change

Check the status of the reader for card insertion, removal or availability of the reader. This SCardGetStatusChange function blocks execution until the current availability of the cards in a specific set of readers change. The caller supplies a list of monitored readers and the maximum wait time (in milliseconds) for an action to occur on one of the listed readers. LONG SCardGetStatusChange (IN SCARDCONTEXT hContext, IN DWORD dwTimeout, IN OUT LPSCARD READERSTATE rgReaderStates,

IN DWORD cReaders);

Page 5 of 31

November 2013

- 3. List Readers To acquire a list of all PC/SC readers use the SCardListReaders function. Look for HID OMNIKEY 5025-CL in the returned list. If multiple OMNIKEY Contactless Smart Card readers are connected to your system, they will be enumerated. Example: HID OMNIKEY 5025-CL 1, and OMNIKEY CardMan 5x21-CL 2. LONG SCardListReaders (IN SCARDCONTEXT hContext, IN LPCTSTR mszGroups, OUT LPTSTR mszReaders, IN OUT LPDWORD pcchReaders);
- 4. Connect

Connect to the card. The scardConnect function establishes a connection (using a specific resource manager context) between the calling application and a smart card contained by a specific reader. If no card exists in the specified reader, an error is returned. LONG SCardConnect(IN SCARDCONTEXT hContext,

- IN LPCTSTR szReader,
- IN DWORD dwShareMode,
- IN DWORD dwPreferredProtocols,
- OUT LPSCARDHANDLE phCard,
- OUT LPDWORD pdwActiveProtocol);
- 5. Exchange Data and Commands with the Card or the reader Exchange command and data through APDUs. The scardTransmit function sends a service request to the smart card, expecting to receive data back from the card.

LONG SCardTransmit(IN SCARDHANDLE hCard,

- IN LPCSCARD IO REQUEST pioSendPci, IN LPCBYTE pbSendBuffer, IN DWORD cbSendLength,
- IN OUT LPSCARD IO REQUEST pioRecvPci,
- OUT LPBYTE pbRecvBuffer,
- IN OUT LPDWORD pcbRecvLength);

Note: The application communicates through SCardControl () in environments

- not allowing SCardTransmit() without an ICC
- not allowing SCardTransmit() for any other reasons
- when developers prefer the application communicate through SCardControl().

The application retrieves the control code corresponding to FEATURE CCID ESC COMMAND (see part 10, rev.2.02.07). In case this feature is not returned, the application may try SCARD CTL CODE (3500) as control code to use.

LONG SCardControl (IN SCARDHANDLE hCard,

IN DWORD dwControlCode, IN LPCVOID lpInBuffer, IN DWORD nInBufferSize, OUT LPVOID lpOutBuffer, IN DWORD nOutBufferSize, OUT LPDWORD lpBytesReturned);

6 Disconnect

> It is not necessary to disconnect the card after the completion of all transactions, but it is recommended. The scardDisconnect function terminates a connection previously opened between the calling application and a smart card in the target reader.

LONG SCardDisconnect(IN SCARDHANDLE hCard,

IN DWORD dwDisposition);

November 2013

Page 6 of 31

7. Release

This step ensures all system resources are released. The **SCardReleaseContext** function closes an established resource manager context, freeing any resources allocated under that context.

LONG SCardReleaseContext(IN SCARDCONTEXT hContext);

3.2 Contactless PC/SC Commands

The PC/SC command set for contactless cards is defined in section 3.2 of the document *Interoperability Specification for ICCs and Personal Computer Systems - Part 3. Requirements for PC-Connected Interface Devices* and is available from the PC/SC Workgroup website http://www.pcscworkgroup.com. The commands use standard APDU syntax and standard SCardTransmit API, but use the reserved value of the CLA byte of 'FF'.

Supported Reader Commands

Instruction	Description	Comments
CAh	Get Data	Partially supported (only UID)
70h	Vendor Specific	Fully support for all vendor specific generic commands

Common SW1SW2 return codes

SW1SW2	Meaning
9000h	Operation successful
6700h	Wrong length (Lc or Le)
6A81h	Function not supported
6B00h	Wrong parameter (P1 or P2)
C0XXh	Wrong length (wrong number Le; 'XX' encodes the exact number) if Le is less than the available UID length)
6F00h	Operation failed

3.2.1 Get Data (CAh)

This Get Data command will retrieve the UID of an inserted card. For HID PROX card, returned is the PAC number.

Command APDU

CLA	INS	P1	P2	Lc	Data In	Le
FFh	CAh	00h	00h	-	-	00h

Response APDU

Data Out	SW1SW2	
PAC number	9000h	Operation successful

For a usage example reference section 6.1 Get UID, page 17.

3.2.2 Vendor Specific Generic Command (70h)

This command allows applications to control OMNIKEY specific features provided by the reader.

Command APDU

CLA	INS	P1	P2	Lc	Data Field	Le
FFh	70h	07h	6Bh	xx	DER TLV coded PDU (Vendor Payload)	xx

In general the IFD supports the INS Byte 70h for vendor specific proprietary commands.

P1 and P2 constitute the vendor ID. For HID OMNIKEY products is the VID = 076Bh.

The Data Field is constructed as ASN.1 objects/items, whereby every OMNIKEY 5025 CL object is identified by a unique Object Identifier (OID).

OIDs are organized as a leaf tree under an invisible root node. The following table shows the first root nodes.

Vendor Command	Tag Value	Vendor Payload Branch
	A0h (constructed)	sioApi
FF 70 07 6C Lc	A2h (constructed)	readerInformationApi
	BCh (constructed)	deviceSpecificCommand
	9Dh (primitive) BDh (constructed)	response
	9Eh (primitive)	errorResponse

Subchapters present all OIDs.

3.2.2.1 Response APDU

For all commands encapsulated in generic 70h APDU, the IFD returns response frame constructed as follows.

Data field	SW1 SW2
DER TLV coded Response PDU	See ISO 7816-4

Two last bytes of response frame are always the return code, SW1SW2.

In cases of an ISO 7816 violation, the return code is according to ISO 7816-4 and the data field may be empty.

In cases of positive processing or internal errors, the IFD returns SW1SW2 = 9000 and the data field is encapsulated in the response TAG (9Dh or BDh) or error response TAG (9Eh).

The response includes more than one leaf, depending on the request. Each leaf is encapsulated in the leaf tag.

HID

3.2.2.2 Error Response

The error response TAG caused by the firmware core is 9Eh (Class Context Specific) + (Primitive) + (1Eh). Length is 2 byte. First byte is the cycle in which the error occurred and the second byte is the exception type.

9E 02 xx yy 90 00					
Value	Description				
9Eh	Tag = Error Response (0Eh) + (Class Context Specific) + (Primitive)				
02h	Len = 2				
cycle	Value byte 1: Cycle in which the error is occurred, see Error Cycle				
error	Value byte 2: Error code, see Error Code				
SW1	90				
SW2	00				

Error Cycle

First value byte					
Cycle	Description				
0	HID Proprietary Command APDU				
1	HID Proprietary Response APDU				
2	HID Read or Write EEPROM Structure				
3	RFU				
4	RFU				
5	RFU				

Error Code

Second value byte				
Exception		Description		
3	03h	NOT_SUPPORTED		
4	04h	TLV_NOT_FOUND		
5	05h	TLV_MALFORMED		
6	06h	ISO_EXCEPTION		
11	0Bh	PERSISTENT_TRANSACTION_ERROR		
12	0Ch	PERSISTENT_WRITE_ERROR		
13	0Dh	OUT_OF_PERSISTENT_MEMORY		
15	0Fh	PERSISTENT_MEMORY_OBJECT_NOT_FOUND		
17	11h	INVALID_STORE_OPERATION		
19	13h	TLV_INVALID_SETLENGTH		
20	14h	TLV_INSUFFICIENT_BUFFER		
21	15h	DATA_OBJECT_READONLY		
31	1F	APPLICATION_EXCEPTION (Destination Node ID mismatch)		
42	2Ah	MEDIA_TRANSMIT_EXCEPTION (Destination Node ID mismatch)		
43	2Bh	SAM_INSUFFICIENT_MSGHEADER (Secure Channel ID not allowed)		

Page 9 of 31

November 2013

Second value byte				
Exception		Description		
47 2Fh TLV_INVALID_INDEX		TLV_INVALID_INDEX		
48	30h	SECURITY_STATUS_NOT_SATISFIED		
49	31h	TLV_INVALID_VALUE		
50	32h	TLV_INVALID_TREE		
64	40h	RANDOM_INVALID		
65	41h	OBJECT_NOT_FOUND		

4 Objects and Items

The reader presents smart card information as well as reader information as ASN.1 objects/items, whereby every object is identified by a unique Object Identifier (OID).

4.1 The OID Tree

OIDs are organized as a leaf tree under an invisible root node. The following table shows the first root nodes.

Object sub tree	Tag Value	Description
sioApi	A0h (constructed)	SIO API, allows processing of HID Secure Identity Objects
readerInformationApi	A2h (constructed)	Reader information API
deviceSpecificCommand	BCh (constructed)	Device specific command set
response	9Dh (primitive) BDh (constructed)	Response
errorResponse	9Eh (primitive)	Error Response

4.1.1 HID Secure Identity Object

SIO application interface, SIO Api (A0h), supports access to a HID Secure Identity Object.

Reader OK5025 CL does not have SIO processor and does not handle Secure Channel. The only supported SIO Api command is Get PAC Bits call.

Vendor Command	SIO API	Request	ASN1 name of Branches
FF 70 07 6B Lc	Tag = A0h	Get ContentElement [A1h]	ContentElementTag [80h] (read only) implicitFormatPhysicalAccessBits [04h]

For usage example refer to 6.2 Get PAC Bits, page 17.

Page 10 of 31

5 Reader Configuration

All OMNIKEY 5025 CL configuration items are identified by a unique ASN.1 leaf. The root is defined as Reader Information API and is encapsulated in a vendor specific generic command described in 3.2.2 Vendor Specific Generic Command (70h), page 8.

The root tag **readerInformationApi** A2h is reserved for GET and SET of reader specific information and provides access to reader configuration.

For a Reader Information GET requests the Le byte must be present, and the Response Tag (1D) is always CONSTRUCTED.

Under the root and the get/set request are a number of branches, organized as follows:

Vendor Command	Reader Information API	Request	ASN1 name of Branches
FF 70 07 6B Lc	Tag = A2h	Get [A0h] Set [A1h]	readerCapabilities [A0h] (read only) productName [82h] productPlatform [83h] firmwareVersion[85h] numberOfContactSlots[8b] numberOfContactlessSlots[8C] numberOfAntennas[8D] vendorName[8F] serialNumber[92h]
			readerCurrentMode [8Dh] (read/write)
			readerATRConfiguration [8Bh] (read/write)
			readerConfigurationControl [A9h] (write only) restoreFactoryDefaults [81h]
			proxConfiguration [ACh] (read/write) proxTimeScale [90h] proxParamPool [ABh] proxFSKPool [AEh]

Reader Information Structure

Note: After SET requests, restart the reader to apply the changes.

Page 11 of 31

November 2013

5.1 Reader Capabilities (A0h)

Tag readerCapabilities A0h is constructed. One or more primitive sub tags must follow.

Та	ASN.1 name Value Type Len Acce ss							
Name	product							
82h	productName	OMNIKEY 5025-CL	Null String	16	RO			
Get AP Respo	Get APDU: FF 70 07 6B 08 A2 06 A0 04 A0 02 <u>82</u> 00 00 Response: BD 12 <u>82</u> 10 4F 4D 4E 49 4B 45 59 20 35 30 32 35 2D 43 4C 00 90 00							
Name of	of processor platform	-		-				
83h	productPlatform	AViatoR	Null String	8	RO			
Get AP Respo	DU: FF 70 07 6B 08 A2 06 A0 04 A0 nse: BD 0A <u>83</u> 08 41 56 69 61 74 6F) 02 <u>83</u> 00 00 ⁻ 52 00 90 00						
FwVers	sionMajor + FwVersionMinor + Buildl	Nr						
85h	firmwareVersion	XX YY ZZ	Octet String	3	RO			
Get AP Respo	DU: FF 70 07 6B 08 A2 06 A0 04 A0 n se: BD 05 <u>85</u> 03 01 01 02 90 00	0 02 <u>85</u> 00 00						
Numbe	r of available contact slots							
8Bh	numberOfContactSlots	00h	Uint8_t	1	RO			
Get AP	DU: FF 70 07 6B 08 A2 06 A0 04 A0) 02 <u>8B</u> 00 00						
Respo	nse: BD 03 <u>8B</u> 01 00 90 00							
Numbe	r of available contactless slots			1	r			
8Ch	numberOfContactlessSlots	01h	Uint8_t	1	RO			
Get AP Respo	DU: FF 70 07 6B 08 A2 06 A0 04 A0 nse: BD 03 <u>8C</u> 01 01 90 00	0 02 <u>8C</u> 00 00						
Numbe	r of available low frequency antenna	s		-				
8Dh	numberOfAntennas	01h	Uint8_t	1	RO			
Get AP	DU: FF 70 07 6B 08 A2 06 A0 04 A0	0 02 <u>8D</u> 00 00						
Vendor name								
8Fh	n vendorName HID Global Null String 11 RO							
Get APDU: FF 70 07 6B 08 A2 06 A0 04 A0 02 8F 00 00								
Response: BD 0D <u>8F</u> 0B 48 49 44 20 47 6C 6F 62 61 6C 00 90 00								
Unique	Unique IFD serial number							
85h	serialNumber	01h	Octet String	16	RO			
Get AP	DU: FF 70 07 6B 08 A2 06 A0 04 A0	0 02 <u>92</u> 00 00						
Response: BD 12 92 10 10 03 4F 00 4B 00 31 00 32 00 33 00 34 00 35 00 90 00								

Page 12 of 31

5.2 HID Prox Configuration (ACh)

The tag **proxConfiguration ACh** is constructed. It must be followed by one primitive or constructed tag. Multi-leaf request is not allowed.

5.2.1 Prox Time Scale (9Ch)

The **proxTimeScale** tag **90h** is primitive and class specific. It defines the polling delay between card scanning.

Тад	ASN.1 name	Value	Туре	Len	Access		
90h	proxTimeScale	Default: 0014h	Uint16_t	2	RW		
		Allowed: 0000h – 00FFh					
Get AP	DU: FF 70 07 6B 08 A2 0	6 A0 04 <u>AC</u> 02 <u>90</u> 00 00					
Respor	nse: BD 04 <u>90</u> 02 00 14 9	00 00					
Set APDU: FF 70 07 6B 0A A2 08 A1 06 <u>AC</u> 04 <u>90</u> 02 00 14 00							
Respor	Response: 9D 00 90 00						

The scaling rule is following:

$$delay = delay_{default} \times \frac{timeScale}{10}$$

As the default polling delay (*delay*_{default}) is 100 ms, actual polling delay is 200 ms.

5.3 ATR Configuration (8Bh) in Native CCID Mode

The tag **readerATRConfiguration 8Bh** is primitive, and defines ATR format in Native CCID Mode – see 5.4 Reader Mode (8Dh), page 15.

Tag	ASN.1 name	Value	Туре	Len	Access	
8Bh	readerATRConfiguration	00h - ATR is formatted according to PC/SC part 3	Octet String	1	RW	
		01h - ATR contains card data				
		(PAC) in historical bytes				
Get AF	PDU: FF 70 07 6B 06 A2 04	A0 02 <u>8B</u> 00 00				
Respo	Response: BD 03 8B 01 01 90 00					
Set AF	Set APDU: FF 70 07 6B 07 A2 05 A1 03 <u>8B</u> 01 00 00					
Respo	onse: 9D 00 90 00					

ATR Format according to PC/SC part 3

The ATR of storage cards (for example HID Prox cards) is composed as described in PC/SC - Part 3: Requirements for PC-Connected Interface Devices, section 3.1.3.2.3.2 Contactless Storage Cards, Table 3.6. For the host application to identify a storage and card type properly, its standard and card name is mapped according to PC/SC 2.01 - Part 3: Requirements for PC - Connected Interface Devices - Supplemental Document.

Note: The Registered Application Provider Identifier (RID) returned by the OMNIKEY Contactless Smart Card reader for storage cards (cards without a CPU) is A0 00 03 06 0A, indicating a PC/SC compliant ATR generation.

Page 13 of 31

November 2013

Example:

```
ATR
3B 8F 80 01 80 4F 0C A0 00 00 03 06 40 00 00 00 00 00 00 28
          ^
   L
          HISTORICAL BYTES
                                                  11
   T
                                                  + F - number of historical bytes
                                                  ++ TCK
HISTORICAL BYTES
80 4F OC AO 00 00 03 06 40 00 00 00 00 00 00
^^ ^^ ^^ ** -RID- ** ^^
                          ~~
++ NN - Bytes for Card Name (No information
given)
11 11 11 11
                     ++ SS - Byte for Standard (Low frequency contactless
11 11 11 11
cards)
11 11 11 11
|| || || ++ Registered application provider identifier (RID) for PC/SC
Workgroup
11 11 11
|| || ++ Length
11 11
|| ++ Application identifier Presence indicator
++ Category indicator - status indicator may be present
```

ATR Format containing PAC Bits in Historical Bytes

In this setting the OMNIKEY 5025 CL reader returns PROX card data in an answer to reset (ATR) commonly used in PC/SC – based smart card systems. For HID PROX cards, the first byte of the ATR is always 3B hex. It is followed by a byte that indicates in its LSB nibble how many historical bytes will follow. The historical bytes hold the card's ProxFormat coded as follows:

00 03 SS NN DATA[SS - 1]

-	00	-	PROX format = Wiegand Raw
-	03	-	PAC BIT STRING TAG
-	SS	-	number of subsequent bytes
-	SS	-	number of trailing insignificant bits
-	DATA[SS]	-	PAC bits, where NN least significant bits in last byte are invalid

Page 14 of 31

Example: ATR 3B 88 01 00 03 05 06 80 86 98 C0 D7 ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ HISTORICAL BYTES Т 11 ++ TCK Т Т + number of historical bytes (LSB nibble) HISTORICAL BYTES 00 03 05 06 80 86 98 C0 ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ || || || || *CARD DATA* - PAC bits, where NN least significant bits in last byte are invalid 11 11 11 11 || || || ++ NN - number of trailing insignificant bits 11 11 11 || || ++ SS - number of subsequent bytes 11 11 || ++ PAC BIT STRING TAG 11 ++ PROX format = Wiegand Raw

5.4 Reader Mode (8Dh)

The tag readerCurrentMode 8Dh is primitive and defines reader operating mode:

Tag	ASN.1 name	Value Value				
8Dh	readerCurrentMode	00h – Native CCID mode 01h – Legacy mode, OK5325 emulation	Octet String	1	RW	
Get AP	DU: FF 70 07 6B 05 A2 03	A0 01 <u>8D</u> 00				
Respor	Response: BD 03 8D 01 00 90 00					
Set API	Set APDU: FF 70 07 6B 07 A2 05 A1 03 <u>8D</u> 01 01 00					
Respon	Response: 9D 00 90 00					

Note: In Native CCID mode the OMNIKEY 5025 CL reader does not require a dedicated driver – native CCID driver from the operating system is used. The ATR format is configured according to the **readerATRConfiguration** setting. See 5.3 ATR Configuration (8Bh) in Native CCID Mode, page 13.

In Legacy mode the OMNIKEY 5325 behavior is emulated. HID driver is required. The ATR format is the same as for the OMNIKEY 5325 and is described in 6.3 ATR Format in Legacy Mode, page 18.

Page 15 of 31

November 2013

5.5 Reader Configuration Control (A9h)

The **readerConfigurationControl** tag A9h is constructed, and the SET branches control the reader's behavior.

There is only one supported function.

Tag	ASN.1 name	Function	Len	Access
81h	restoreFactoryDefaults	Restore Factory Defaults This means that any custom settings will be lost		command
Set API Respon	DU:ff 70 07 6в 09 а2 07 2 se:9d 00 90 00	A1 05 A9 03 81 01 00 00		

November 2013

Page 16 of 31

6 Migration Scenarios

6.1 Get UID

This Get Data command will retrieve the UID of an inserted card. For HID PROX card, PAC number will be returned.

Example: Reading HID PROX UID

Command:

```
FF CA // Get Data
00 00 // Get UID
00 // Le
```

Response:

PACS // PAC Bits

90 00 // Success

6.2 Get PAC Bits

The OMNIKEY 5325 generates an ATR which contains the PACS bits. The OMNIKEY 5025 CL introduces a new method to retrieve those bytes in a card independent way.

The command Get PAC Bits returns the Physical Access Control bits of the inserted media. It is processed by the IFD firmware reading the HID PROX media. The GET PAC Bits command is coded as follows:

DER TLV PDU:

A0 05 // CHOICE SioAPI A1 03 // CHOICE SamCommandGetContentElement 80 01 // Sequence ContentElementTag 04 // Value = implicitFormatPhysicalAccessBits

The complete APDU for LF media is: FF 70 07 6B 07 A0 05 A1 03 80 01 04 00

Get PAC Bits response:

9D						// Tag = CHOICE Response
	LL					<pre>// number of subsequent bytes</pre>
	03					//PAC BIT STRING TAG
		SS				//number of subsequent bytes
			NN			<pre>//number of trailing insignificant bits</pre>
			D	ATA[SS ·	- 1]	<pre>//PAC bits, where NN least significant bits</pre>
						in last byte are invalid

Example response for 35bit PAC bit string:

9D 08 03 06 05 81 ED BE 15 60

November 2013

6.3 ATR Format in Legacy Mode

The OMNIKEY 5025 CL can be configured to emulate OK5325 behavior. In such a scenario the HID driver is required. The operating mode is controlled by the **readerCurrentMode** – see 5.4 Reader Mode (8Dh), page 15 for details.

The OMNIKEY 5025 CL reader in legacy mode returns PROX card data in an answer to reset (ATR) commonly used in PC/SC - based smart card systems. For HID PROX cards, the first byte of the ATR is always 3B hex. It is followed by a byte that indicates in its LSB nibble how many PROX data bytes will follow. The third byte holds the card's ProxFormat.

6.3.1 ATR Example

The following ATR was generated by a card that returned the Wiegand raw data 00 02 25 64 hex =

100010010101100100 bin.

ATR

Prox Format (here 0, meaning Wiegand raw)

For more information regarding Prox Format Settings in Legacy mode see to the OMNIKEY Contactless Smart Card Readers Developer Guide, 5321-903.

Page 18 of 31

7 Appendix A - Enabling Escape CCID commands

In order to send or receive an Escape command to a reader using Microsoft's CCID driver, add the DWORD registry value **EscapeCommandEnable** and set to a non-zero value under one of the following keys:

• Windows 7 and 8

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB\VID_076B&PID_502A \<serial number>\Device Parameters\WUDFUsbccidDriver

• Prior Windows 7

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB\VID_076B&PID_502A \<serial number>\ Device Parameters

Then the vendor IOCTL for the Escape command is defined as follows:

#define IOCTL CCID ESCAPE SCARD CTL CODE(3500).

For details see http://msdn.microsoft.com/en-us/windows/hardware/gg487509.aspx .

Registry Editor					
<u>File Edit View Favorites H</u> elp					
a 퉬 VID_076B&PID_502A	*	Nam	e	Туре	Data
⊳ 퉲 5&34f5f5c&0&1		ab (D	efault)	REG SZ	(value not set)
▷ · · · · · · · · · · · · · · · · · · ·		910 E.	capeCommandEnable	REG DWORD	0x00000001 (1)
▶					
⊳ 🦺 7&c165ccb&0&1					
⊿ 🦺 7&c165ccb&0&2					
Control					
Device Parameters					
WDF					
WUDF					
WUDFDiagnosticinfo					
WUDFUsbccidDriver	-				
	•				4
Computer\HKEY_LOCAL_MACHINE\SYS	TEM\C	urrentCo	ontrolSet\Enum\USB\VII	D_076B&PID_50	2A\7&c165ccb{

If reader with different serial number is connected to computer the operation must be repeated.

Page 19 of 31

November 2013

8 Appendix B - HID Driver Installation

This procedure is only valid for OMNIKEY 5025 CL reader running in legacy mode (when OMNIKEY 5325 reader is emulated).

- Go to <u>http://www.hidglobal.com/products/readers/omnikey</u>. Click the <u>Download OMNIKEY</u> <u>drivers</u> link and select **5325 USB Prox** in the product combo box. Download the latest OMNIKEY Contactless Smart Card driver installation package for Windows.
- Run the installation package and follow the instructions. The installation package extracts all the necessary driver files to your hard drive. Take note of the location to which the files were copied. At this time you have only extracted, not installed the driver files.
- 3. Connect the reader to your computers USB port.
- 4. The Found New Hardware Wizard appears. To continue the driver installation, click Next. Found New Hardware Wizard

Note: On Windows XP systems, the Microsoft Windows CCID Class driver may be activated without showing the **Found New Hardware Wizard**. If this is the case, replace the Microsoft PC/SC driver manually with the OMNIKEY proprietary PC/SC driver using the Device Manager. See Section 9 Appendix C - Manual Driver , page 24.

November 2013

Page 20 of 31

5. Select Search for a suitable driver for my device (recommended) and click Next. Found New Hardware Wizard

Install Hardware Device Drivers A device driver is a software program that enables a hardware device to work with an operating system.				
This wizard will complete the installation for this device:				
A device driver is a software program that makes a hardware device work. Windows needs driver files for your new device. To locate driver files and complete the installation click Next.				
Search for a suitable driver for my device (recommended)				
Display a list of the known drivers for this device so that I can choose a specific driver				
< <u>B</u> ack <u>N</u> ext > Cancel				

6. Select Specify a location and click Next.

Found New Hardware Wizard				
Locate Driver Files Where do you want Windows to search for driver files?				
Search for driver files for the following hardware device:				
Smart Card Reader USB				
The wizard searches for suitable drivers in its driver database on your computer and in any of the following optional search locations that you specify.				
To start the search, click Next. If you are searching on a floppy disk or CD-ROM drive, insert the floppy disk or CD before clicking Next.				
Optional search locations:				
Floppy disk drives				
CD-ROM drives				
Specify a location				
Microsoft Windows Update				
< <u>B</u> ack <u>N</u> ext > Cancel				

Page 21 of 31

November 2013

7. Click **Browse** and go to the location where you saved the driver package. To continue, click **OK**.

Install F	rom Disk	
H	Insert the manufacturer's installation disk, and then make sure that the correct drive is selected below.	ОК
		Cancel
	Copy manufacturer's files from:	
	D:\Download\OMNIKEY\OMNIKEY 5321 R1.2.2.	Browse

8. If the driver was found, click Next.

Hardware Update Wizard
Select the device driver you want to install for this hardware.
Select the manufacturer and model of your hardware device and then click Next. If you have a disk that contains the driver you want to install, click Have Disk.
Model
STOMNIKEY 5x21
This driver is digitally signed. <u>Tell me why driver signing is important</u>
< <u>B</u> ack Next > Cancel

November 2013

Page 22 of 31

9. If the driver is a beta driver and not digitally signed, the following dialogue appears. Click **Continue Anyway**.

10. The following message appears and the green LED illuminates on the OMNIKEY Contactless Smart Card reader.

If the installation was successful, the LED on the reader illuminates and the reader is listed in the OMNIKEY Workbench as OMNIKEY Contactless Smart Card reader.

Page 23 of 31

November 2013

9 Appendix C - Manual Driver Update

This procedure describes how to manually choose the driver used by the operating system.

- 1. In the Device Manager find the OMNIKEY 5025 CL reader and choose its Properties.
- 2. In the Driver tab, click Update Driver....

USB Sma	rt Card	l reade	r Properties 🛛 🕐 🔀	<
General	Driver	Details		
	USB S	mart Card	l reader	
	Driver	Provider:	Microsoft	
	Driver	Date:	8/1/2006	
	Driver	Version:	5.2.3790.2724	
	Digital	Signer:	Microsoft Windows Hardware Compatibility Publ	
Driv	er Details	\$	To view details about the driver files.	
Ugd	ate Drive	۶ ۲	To update the driver for this device.	
<u>R</u> oll	Back Dri	ver	If the device fails after updating the driver, roll back to the previously installed driver.	
	<u>J</u> ninstall		To uninstall the driver (Advanced),	
			OK Cancel)

3. To install the driver already available in your system in Hardware Update Wizard choose No, not this time and click Next.

Hardware Update Wizard	
	Welcome to the Hardware Update Wizard
	Windows will search for current and updated software by looking on your computer, on the hardware installation CD, or on the Windows Update Web site (with your permission). Read our privacy policy
	Can Windows connect to Windows Update to search for software?
	 <u>Y</u>es, this time only <u>Y</u>es, now and <u>e</u>very time I connect a device <u></u> No, not this <u>t</u>ime
	Click Next to continue.
	< <u>B</u> ack <u>N</u> ext > Cancel

November 2013

Page 24 of 31

Hardware Update Wizard	
	This wizard helps you install software for:
	nnis wizara naps you instali soltware tot.
	USB Smart Card reader If your hardware came with an installation CD or floppy disk, insert it now.
	What do you want the wizard to do?
	 Install the software automatically (Recommended) Install from a list or specific location (Advanced)
	Click Next to continue.
	< <u>B</u> ack <u>N</u> ext > Cancel

4. Select Install from a list or specific location (Advanced). Click Next.

5. And then Don't search. I will choose the driver to install. Click Next.

Hardware Update Wizard
Please choose your search and installation options.
○ Search for the best driver in these locations.
Use the check boxes below to limit or expand the default search, which includes local paths and removable media. The best driver found will be installed.
Search removable media (floppy, CD-ROM)
Include this location in the search:
J:\ Browse
Don't search. I will choose the driver to install.
Choose this option to select the device driver from a list. Windows does not guarantee that the driver you choose will be the best match for your hardware.
< <u>B</u> ack <u>N</u> ext> Cancel

Page 25 of 31

November 2013

6. Select the driver for your device and click Next.

Hardware Update Wizard				
Selec	t the device driver you want to ins	stall for this hardware.		
2	Select the manufacturer and model of yo have a disk that contains the driver you	our hardware device and then want to install, click Have Dis	click Next. If you k.	
Model				
📑 Micr	osoft Usbeeid Smarteard Reader (WUDF			
💱 OMN	IIKEY 5×25			
📷 This	driver is digitally signed.		Have Disk	
<u>Tell</u>	me why driver signing is important			
		< <u>B</u> ack <u>N</u> ext >	Cancel	

November 2013

Page 26 of 31

10 Appendix D - Definitions, Abbrev and Symbols

AES	Advanced Encryption Standard
APDU	Application Protocol Data Unit
API	Application Programming Interface
ASN.1	Abstract Syntax Notation One
BER	Basic Encoding Rules
CLA	Class byte of an APDU
DER	Distinguished Encoding Rules
MAC	Message Authentication Code
MSDN	Microsoft [®] Developer Network
OID	Object Identifier
PAC	Physical Access Control
PACS	PAC Physical Access Control Services
PDU	Protocol Data Unit
PC/SC	Personal Computer/Smart Card
SIO	Secure Identity Object
CSN	Card Serial Number
IFD	Interface Device (for accessing ICC card)

11 Appendix E - References

[ISO 7816-4]	ISO 7816-4
• •	Identification cards — Integrated circuit cards -
	Part 4: Organization, security and commands for
	Interchange
	Second edition - 2005-01-15
[ISO 8825]	ISO/IEC8825 ASN.1 encoding rules:
	Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
	Fourth edition 2008-12-15
	or
	X.690
	Information technology – ASN.1 encoding rules:
	Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
[PCSC-3-Sup-CL]	Interoperability Specification for ICCs and Personal Computer Systems
	Part 3. Supplemental Document for Contactless ICCs
	Revision 2.02.00
[PCSC-3]	Interoperability Specification for ICCs and Personal Computer Systems
	Part 3. Requirements for PC-Connected Interface Devices
	Revision 2.01.09

Page 27 of 31

November 2013

[PCSC-3-Sup]	Interoperability Specification for ICCs and Personal Computer Systems
	Part 3. Supplemental Document
	Revision 2.01.08
[PCSC-3-AMD]	Interoperability Specification for ICCs and Personal Computer Systems
	Part 3. Requirements for PC-Connected Interface Devices - AMENDMENT 1
	Revision 2.01.09
[OMNIKEY DEV	OMNIKEY® Contactless Smart Card Readers Developer Guide
GUIDE]	Paragraph 12. Driver Configuration via ProxFormat
	Paragraph 13. ProxFormat Settings
	Revision B.2

12 Appendix F - Sample Code

This sample displays PROX card ATR and data.

```
// Sample C code that displays ATR and data from PROX card.
// Link with winscard.lib
// Copyright 2013, HID Global
#include <stdio.h>
#include <winscard.h>
int main(int argc, char* argv[])
{
    LONG lResult;
    SCARDCONTEXT hContext;
    SCARDHANDLE hCard;
    DWORD dwActiveProtocol;
    DWORD dwLen;
    SCARD_IO_REQUEST pIoReq;
    BYTE pBuffer[32];
    USHORT SW;
    DWORD i;
    //APDU to get data from card
    BYTE GET_DATA[] = {0xFF, 0xCA, 0x00, 0x00, 0x00};
    // First 5025 reader name
    WCHAR szReader[] = L"HID OMNIKEY 5025-CL 0";
    // Establish context
    IResult = SCardEstablishContext(SCARD SCOPE USER, NULL, NULL, &hContext);
    if( SCARD_S_SUCCESS != lResult )
    ł
        printf("SCardEstablishContext failed. Error code 0x%08X.\n", lResult );
        return 1;
    }
    //Connect to card
    lResult = SCardConnect( hContext,
```

November 2013

Page 28 of 31


```
szReader,
                         SCARD SHARE SHARED,
                         SCARD_PROTOCOL_T0 | SCARD_PROTOCOL_T1,
                         &hCard,
                         &dwActiveProtocol);
if( SCARD_S_SUCCESS != lResult )
{
    //release context
    SCardReleaseContext(hContext);
    printf("Can not detect card. Error code 0x%08X.\n", lResult );
    return 1;
}
//Select protocol T=1 or T=0
if( SCARD_PROTOCOL_T1 == dwActiveProtocol )
{
    pIoReq = *SCARD_PCI_T1;
}
else
{
    pIoReq = *SCARD PCI T0;
}
//get ATR
dwLen = sizeof(pBuffer);
lResult = SCardStatus( hCard,
                         NULL,
                         NULL,
                         NULL,
                         NULL,
                         pBuffer,
                         &dwLen);
if( SCARD_S_SUCCESS != lResult )
{
    //disconnect card
    SCardDisconnect(hCard, SCARD_LEAVE_CARD);
    //release context
    SCardReleaseContext(hContext);
    printf("Can not get card status. Error code 0x%08X.\n", lResult );
    return 1;
}
//display ATR
printf("ATR: ");
for(i=0;i<dwLen-2;i++)</pre>
{
    printf(" %02X", pBuffer[i]); //print hex digits
```

Page 29 of 31

November 2013


```
}
printf("\n"); //end of line
dwLen = sizeof(pBuffer);
lResult = SCardTransmit(hCard,
                        &pIoReq,
                        GET DATA,
                         sizeof(GET_DATA),
                         NULL,
                         pBuffer,
                         &dwLen);
if( SCARD_S_SUCCESS != lResult )
{
    //release context
    SCardReleaseContext(hContext);
    printf("Card not detected. Error code 0x%08X.\n", lResult );
    return 1;
}
SW = pBuffer[dwLen-2] << 8 | pBuffer[dwLen-1];</pre>
//response code
if( SW != 0x9000 )
{
          //disconnect card
          SCardDisconnect(hCard, SCARD_LEAVE_CARD);
          //release context
       SCardReleaseContext(hContext);
    printf("Command not accepted. Error code 0x%04X.\n", SW );
    return 1;
}
//display response
printf("Data:");
for(i=0;i<dwLen-2;i++)</pre>
{
    printf(" %02X", pBuffer[i]); //print hex digits
}
printf("\n"); //end of line
//disconnect card
SCardDisconnect(hCard, SCARD_LEAVE_CARD);
//release context
SCardReleaseContext(hContext);
return 0;
```

```
}
```

November 2013

Page 30 of 31

HID Global Headquarters:

North America: +1 949 732 2000 Toll Free: 1 800 237 7769 Europe, Middle East, Africa: +49 6123 791 0 Asia Pacific: +852 3160 9800

Latin America: +52 477 779 1492

support.hidglobal.com

hidglobal.com